
Software
Systems

Engineering

Variability Modeling and
Implementation with EASy-Producer

Klaus Schmid, Holger Eichelberger and Sascha El-
Sharkawy

{schmid,eichelberger,elscha}@sse.uni-hildesheim.de
www.sse.uni-hildesheim.de

Software
Systems

Engineering

19.10.2019 © Klaus Schmid, SSE, University of Hildesheim 1

Vision of Product Line Engineering
Key Goal:

exploit commonality in externally (visible) properties of the software
(system) in terms of commonality of the implementation

Product Line Engineering vs. Traditional Software Engineering

Complete Shift of Viewpoint
instead of producing a product and reusing parts
produce a set of products in an integrated manner

� Engineer differences

Project focus Integrated development
of a set of products

Software
Systems

Engineering

19.10.2019 © Klaus Schmid, SSE, University of Hildesheim 2

Product Line Engineering is..
..a systematic approach for developing a set of product variants
..the technological basis for software mass-customization
.. a comprehensive framework that consists of two different life-cycles for

software engineering

Core idea:

.. variability management helps to organize this

reuse always

Common

selectable

Variability

specific development

Product specific

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

.. crosscutting variability
Ideally: central model that supports configuration of all parts

Requirements

Architecture

Implementation

Test Cases

Variability
Model

D
es

cr
ip

tio
n

of

po
ss

ib
le

 v
ar

ia
tio

ns

3

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

49

What is Product Line Development?
• Many Systems – a single basis for implementation
• Selection of implementation using configuration

Transformation
(bind variability)

…
…
…
…
…

Configuration
Information
(Variability)

ProductComponents

Product Lines = binding often
during development (but also later)

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

510

Challenges in Product Line Engineering
• Need to describe configurations

– Very expressive
– Easy-to-use (known concepts)

• Decision Modeling
• Similarity to programming

• Need to describe transformations
– Very expressive
– Flexible with respect to technologies
– Open to integration of arbitrary third-party tools

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
EASy-Producer supports software product line ecosystems

Platform
A

Intermediary
F

Intermediary
C

Intermediary
D

Platform
B

Customer
System 1

Variant-rich
Infrastructure

= Derived infrastructure
+ new implementation

CompositionPartial
Instantiation

6

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Challenges in Variant-Rich Software Ecosystems
• Introduction of: Product Line Project

¾ Derivation (from preceding) units
¾ Provisioning of new variability
¾ Combine variability and infrastructure / code

• Support
¾ Composition operation (Î multi-product lines)
¾ Staged derivation
¾ Heterogeneous artifacts
¾ Different instantiation mechanisms (even for the same artifact, based on

origin of artifact)
¾ Complex dependency management

7

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Specific Characteristics of the EASy-Producer Approach
• Product Line Project (PLP) as a single, independent unit (separate

configuration management)
– Acts as product AND infrastructure
– Supports independent product-specific parts

• Pull-only derivation to support decoupled evolution

• Rich, expressive variability-modelling language (IVML)

• Special language for configurable asset transformation (VIL)
– Staged configuration support
– Multi-project composition support

• Integrated template language

• Development and runtime support

• Fast reasoner

• Extendable asset model

8

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
The Toolset

EASy-Producer
Instantiators

Interactive DSL-based

Co
nf

ig
ur

at
io

n
In

st
an

tia
tia

tio
n

Configuration View
IVML

Modelling Languages
IVML

Modelling Language

VIL & VTL
Build Languages

VIL & VTL
Build Languages

EASy-Producer-Tools
sse.uni-hildesheim.de/easy-producer

Instantiators

9

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

10

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Configuration
• Table-based editor

– Supports defaults (and freeze)
– Hierarchical structure
– Arbitrary non-boolean values

• Supported by reasoning
– Consistency checking
– Value propagation

11

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Configuration steps
• Important: Derive a new product

• In the new product
– Change the configuration settings
– Validate the configuration

12

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

13

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Instantiation by Instantiators
• Use of known instantiation plugins
• Instantiation process:

– Sequence of instantiators
– Associated artifacts

• Composition:
– Linking or copying
– Conflict resolution: Namespace

manipulation

• More flexibility: DSL
• Integration of complex instantiators:

– System call
– Programming a new plugin

14

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Instantiation steps
• Important: Freeze the configuration

• Instantiate the product

15

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

16

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
IVML Configuration Capabilities (1)
• Decision-modeling based

• Text-based

• Typed variables (Boolean, non-Boolean including compounds and
container, may have default values)

• Derivation and extension for complex types

• User-defined operations

• Introduction of defaults to distinguish “must” vs. local decisions

• Multi-stage default-handling, including default constraints

• Expressive constraint language

• Meta-information: typed annotations

Note: every interactive
change is mapped to IVML

17

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
IVML Configuration Capabilities (2)
• Project handling: composition, versioning

• Scalability mechanisms: information hiding

• Name-space capabilities to handle conflict-free composition

• Modularization through variability interfaces

Î IVML (Integrated Variability Modeling Language)

18

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
IVML-Support for handling multiple stages

PLP Px

Product Line Project P

PLP P0

P provides values used
in the transformation to
derive instance (freeze)

If not all values
provided, will contain
remaining variability

Unbound variability
from P and lower-level
projects is bound

a and y can
be assigned

freezes x;
defines a

defines x, y

19

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Creation of Configuration Approach
Phase 1: Creation of an integrated, formal approach
• Focus on enabling to express dependencies in a way that:

– Evolution issues are minimized
– Dependencies are expressed in a canonical source-indepedendent way

• Requires:
– Multi-stage default logic
– Default constraints (vs. mandatory constraints)

Phase 2: Generalization
• Basis for IVML
• Used in several different projects

H. Eichelberger, K. Schmid. Mapping the design-space of textual variability modeling languages: a refined analysis.
International Journal on Software Tools for Technology Transfer, 1-26, 2014.
H. Brummermann, M. Keunecke, K. Schmid. Formalizing distributed evolution of variability in information system
ecosystems. VaMoS '12, 11-19, 2012.

20

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
IVML: Basic capabilities
• Every configuration is a project

• Variability is structured by a rich type system including containers such as
sets and sequences and variables are defined based on this

• Variables can have default values

project contentSharing {
enum ContentType {text, video, audio, threeD, blob};
typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

ContentType content;
Bitrate contentBitrate = 128;
contentBitrate = 128 implies content = text;

}

Note, this is a
default value

Type
definitions

Variables

21

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Advanced Variability Modeling: Refinement of Structures
• Decision Variables may be structured in terms of compounds

• Inheritance from compounds is possible

compound Content {
String name;
Integer bitrate;

}
compound ExternalContent refines Content{

String contentPath;
String accessPassword;

}

22

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

23

Example

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021, 1990.

enum TransmissionType {Manual, Automatic};
compound Car {

// Manual more fuel efficient
TransmissionType transmission;
Integer horsepower;
Boolean airConditioning;
airConditioning implies horsepower > 100;

}
Car car;

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Advanced Variability Modeling: References
• A variability can reference another variability

(with the meaning: whatever is configured by this)

• Multiple references may point to the same shared variable, in particular
useful when references are stored in containers (not shown)

compound ExternalContent {
String contentPath;
String accessPassword;

}
ExternalContent myContent;
refTo(ExternalContent) myRef = myContent;
refBy(myRef).contentPath

= “http://anyserver.org/content”;

24

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Advanced Variability Modeling: References

compound ExternalContent {
String contentPath;
String accessPassword;

}

ExternalContent myContent;
refTo(ExternalContent) myRef = myContent;
refBy(myRef).contentPath

= “http://anyserver.org/content”;

myRefmyContent

myContent.contentPathmyContent.
accessPassword

alias

25

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Advanced Variability Modeling: Project Handling (Composition)
• Arbitrary derivation chains

(arbitrary deep derivation, arbitrary composition)
• Projects have versions
• While (re)using the projects it is possible to

– require certain versions
– exclude certain versions

project contentSharing {
version v0;
import application;
import targetPlatform with (targetPlatform.version>=v1.3);
conflicts application with (application.version>=v2.0);
application::name = "myApp”;
targetPlatform::name = "myPlatform”;

}

Note, these are other
(possibly external)

projects

26

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Advanced Variability Modeling: Annotations
• Variability description entities (and the corresponding assets) can be further

annotated
• Goal: simple support for meta-variability
• Annotations may reuse any form of variability concept

project contentSharing {
enum BindingTime {configuration=0, compile=1,

runtime=2};
// Attaching an annotation to the entire project.
annotate BindingTime binding = BindingTime.compile

to contentSharing;
}

27

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Advanced Variability Modeling: Annotations
Annotations can be attached to arbitrary sub-groups of variables

compound Content {
String name;
Integer bitrate;

}
Content content;

enum BindingTime {compile, loadtime, runtime};
annotate BindingTime binding = BindingTime.compile

to content;

28

content = {name=”Video”, bitrate=128,
name.binding = BindingTime.compile,
bitrate.binding = BindingTime.runtime};

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
More language capabilities
• Project interfaces

• Collection
– Set
– Sequence

• Derived types

setOf(Type) variableName2;

sequenceOf(Type) variableName1;

typedef AllowedBitrates setOf(Integer);
typedef Bitrate Integer

with(Bitrate >= 128 and Bitrate <= 256);

29

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
More language capabilities
• Freezing variables

• Explicit evaluation (eval)

• Constraint variables

• Handling of undefined variables: constraints are not explicitly evaluated

freeze {
contentSharing;

} but (v|v.binding == BindingTimes.runtime)

Integer a, b;
Constraint x;
x = (a > b);

30

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Expression language
• Strongly based on OCL

• Rich set of base relations and functions

• Set and sequence operations

• Quantification

• A more complex example

contents->forAll(t|t.highBitrate <= 512);
contents->exists(t|t.highBitrate <= 512);

31

parameters2->forAll(p2 | parameters1->
exists(p1| p1.name==p2.name and

typeOf(p1)==typeOf(p2)));

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
EASy Producer: Syntax-driven IVML editor

32

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Experiences with IVML-based Modeling
Initial development
• Based on industrial experience
• Various „Challenge“-Workshops with industrial partners

Further evaluation in different projects:
• All relevant dependencies and configuration capabilities could be represented
• Improved documentation of dependencies
• Easy to learn

Current status
• Successfully evaluated for Klug IS

(expressiveness / learnability)
• Is applied for real systems in

prototypical manner
• Transition to production use ongoing

Projects:
• EasyCar with Robert Bosch GmbH
• ScaleLog (BMWi / Klug IS)
• EU-Project INDENICA
• EU-Project QualiMaster
• HIS eG

33

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

34

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
The Transformation Problem
Initial development
Complexity of transformation
• Different artifacts require different techniques
• Influence of configuration options
• Multiple levels of composition
• Various binding times
• Support for derivation networks:

Assets must inherit their original instantiation mechanism

Development of a specific
approach to transformation

Evaluation of existing
transformation and build
languages unsuccessful

35

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Transformation language: VIL (Variability Instantiation Language)
Combines a number of different programming models
• Object-oriented artifact model
• Procedural Programming
• Rule-based Programming

– Parameterized rules
– Wildcard selectors

• Functional elements

+ Use of arbitrary external programs (black-box instantiators)

The language can be used as
an arbitrary build language

(among other things)

36

Software
Systems

Engineering

19.10.2019 © Klaus Schmid, SSE, University of Hildesheim

•Produktlinien
The realization perspective on product lines

Transformation
(bind variability)

…
…
…
…
…

Configuration
Information
(Variability)

ProductComponents

VIL

VTL

IVML

37

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Transformation language: VIL (Variability Instantiation Language)

vilScript New_Product (Project source, Configuration conf, Project
target) {

version v0;

copySRCFiles() = "$target/src/**/*.java" : "$source/src/**/*.java" {
RHS.copy(LHS);

}

copyRESFiles() = "$target/resources/**/*" : "$source/resources/**/*" {
RHS.copy(LHS);

}

main(Project source, Configuration conf, Project target) = : {
copySRCFiles();
copyRESFiles();
velocity("$target/**/*.java", conf);

}
}

procedural

Object-oriented artifact-model

Rules

38

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
VIL Type Hierarchy (simplified)

Any

String Real

Integer

Boolean

Configuration

Configuration
types

Container

Basic types

Map<K,V> Collection<T>

Set<T>Sequence<T>

Extending
artefacts

Artifact

FileSystemArtifact

FolderArtifact FileArtifact

RuntimeComponent

Path

XmlFileArtifact

VtlFileArtifact

Artefact (meta) model

JavaFileArtifact

~30 Types / Instantiators,
160 Operations

39

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Variables / Types
• Types similar to IVML
• Additional Path type – arbitrary reference to transformable element

• Any type – subsumes all possible types

• Container types
– Collection – abstract supertype of all containers:

• Set – no duplicates, no order
• Sequence – duplicates, order

– Map – associative container (e.g., to represent mappings between
different namings)

• const & protected modifiers

• new method – allows temporary artefacts

Not only filesystem

40

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Basic ideas
• @advice: relate the script to the referenced variability model

• Typed language

• Basic script structure
– main as implicit starting goal
– rulesÎ functions are regarded as a special case

vilScript New_Product (Project source, Configuration conf,
Project target) {

version v0;

method1(param) = postcondition : precondition {
statements;

}
…

}

41

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Basic ideas
• Combine

– Procedural
– Rule-based
– OO-approach

• Rules may rely on artifact relations:

• Benefits
– Only do necessary rework
– Let the infrastructure determine what to work on

copySRCFiles() = "$target/src/**/*.java" : "$source/src/**/*.java" {
RHS.copy(LHS);

}

42

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Basic ideas
• Rules may rely on the explicit handling of logical expressions:

• Statements can also be handled like normal methods (no post-/pre-
conditions)

Boolean processed;
Boolean compiled;

processSRCFiles() = processed==true : {
…

}

compileSRCFiles() = compiled==true : processed==true {
…

}

43

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Commands
• Commands given by artifacts

– Depend on artifacts
– Generic operations (on any artifact): new, rename, delete
– FileArtifacts (e.g.): copy

• execute – start any system command
if cmd is a path to an executable command:
cmd.execute(params)

44

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Extensions
• Specialized commands that are treated like language primitives

(but are externally realized)
– Java compiler

– Velocity

– Others: Maven, ANT, XVCL, AspectJ
– Extendable by further bundles
– Specialized template language VTL

setOf(FileArtifact) javac(Path s, Path t, ...)

setOf(FileArtifact) velocity(FileArtifact t,
Configuration c)

45

setOf(FileArtifact) vilTemplateProcessor(String n,
Configuration c, Artifact a, …)

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Connecting Decisions and Scripts
• A configuration can be made known – advice-annotation

• join – combine elements from configuration with elements from script:

join(d:config.variables(), a:”$source/src/**/*.java”)
with (a.text().matches(”${” + d.name() + ”}”)) {

// operate on decision variable d and
// related artifact a

@advice(ivmlName)
vilScript name (parameterList) extends name1 {
// scriptbody
}

This allows to access configuration variables arbitrarily, also in the editor

46

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Control-Flow (1)
• if – conditional execution

• switch – multiple alternatives

if (expression) ifStatement else elseStatement

switch (expression) {
expression1 : expression2,
expression3 : expression4,
default : expression5

}

47

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Control-Flow (2)
• for – iterate over a number of items, collecting the result

• map – iterate over a number of items, collecting the results

map(d = config.variables()) {
// operate on the iterator variable d of type
// DecisionVariable (see Section 3.4.5.6)

};

48

for (d = config.variables()) {
// operate on the iterator variable d of type
// DecisionVariable (see Section 3.4.5.6)

};

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
Script relations
• A script may explicitly extend another one

• Explicit instantiate of a higher level script

• Explicit reference to higher-level method

instantiate name (argumentList) [with (version op vNumber.Number)]

super.operationName(argumentList)

49

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien
An Example Script
Copy all sourcefiles and apply velocity on them

vilScript New_Product(Project source,Configuration conf,Project target){
version v0;

copySRCFiles() = "$target/src/**/*.java" : "$source/src/**/*.java" {
RHS.copy(LHS);

}

main(Project source, Configuration conf, Project target) = : {
copySRCFiles();
velocity("$target/**/*.java", conf);

}
}

50

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

Modelling data processing pipelines

Financial
source

Twitter
source

Financial
preprocessing

Twitter
preprocessing

Sentiment
analysis

Correlation
computation

Result
sink

Store

1. Define elements as configuration types
2. Define specific configuration as values (development time)

51

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

52

Variability Model
(Type Model)

Hardware Algorithms

Families

CoProcessorServer Algorithm

Family

Pipelines

Source

Data Management

DataSource DataSink

FamilyNode

Sink

Infrastructure Infrastructure

Legend
• Configurable

Element
Module
Refinement
Reference

+,0..1Cardinality

Pipeline
•+ +

* +

InnerNode+ +

PipelineNode

StoreNode

ProcessorNode

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

53

Variability Model: IVML

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

5
4

•Produktlinien

Domain-Specific Modelling

75

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

55

Application

Domain-Specific Modeler

Variability Model

Code Generation

Domain-Specific Infrastructure

Large parts of implementation “for free”
(reusing EASy-producer)
o Powerful, but adequate modeling

language
o Reasoner
o Transformation support

-Producer

• Model with 9 pipelines
• Validation: 250ms
• Code generation

• 4 Minutes
• 30 KLOC in 195 artefakts
• Integration of algorithms

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

56

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

57

Summary-EASy-Producer
• Full support for typical product line problems

– Interactively
– Primarily as DSL (program your product line)

• Goals
– Expressiveness
– Possible to incrementally adopt
– Representation: close to programming
– Powerful reasoning and analysis

• Ecosystem extensions
– (Partial) instantiation support
– Composition
– Openness & Modularization

• Has been applied to industrial problems
Î but we are open to cooperate on more evaluations…

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

58

Summary IVML
• Very expressive approach

– Expressiveness over analyzability
– Can “simulate” feature models, but not restricted to this
– Comparable to Ecore

• Representation
– Similar to programming (ease of transition)
– Includes concepts from OCL (constraints)
– Constraints first class entities
– Annotations: full expressiveness

• Reasoning
– Very efficient forward reasoner
– Aware of multi-step reasoning
– Default logic (freezing

• Ecosystem extensions
– Interfaces
– Modules

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

59

Summary VIL
• Configurable transformation language
• Language is a transformation language

– Rule-based
– Extensible

• In various ways
• Extend wrt. transformation operations
• Extend wrt. artefacts

• May recur to inherited models

Summary VTL (optional)
• Template language
• Especially for artefact creation

19.10.2019 © SSE, University of Hildesheim

Modelling and Implementation
with EASy-Producer

Software
Systems

Engineering

•Produktlinien

60

Material
• EASy-Producer web page

• https://sse.uni-hildesheim.de/en/research/projects/easy-producer/
• EASy-Producer release and documentation page

• http://projects.sse.uni-hildesheim.de/easy/
• EASy-Producer on the SSE github page

• http://ssehub.github.io/

https://sse.uni-hildesheim.de/en/research/projects/easy-producer/
http://projects.sse.uni-hildesheim.de/easy/
http://ssehub.github.io/

