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What are cyber-physical systems ?

CPSs integrate computation, networking, and physical processes

' Cloud
Cyber physical systems, control %
the phyS|caI world Physical sensing Actuation information

Physical devices interact thanks
to Internet of Thing (loT)

CPSs interact with their
environment thanks to sensors
and actuators

CPSoS are CPSs




Why are Cyber-Physical Systems important?

“Software is eating the world”
M. Andreessen

* Cyber physical systems play an important role
in future society with an enormous economic
importance

« CPSs support many application domains

* Improve health care, address climate change,
support renewable energy, autonomous driving
cars, ageing population, sustainability, among
others

« CPSs are present in the Industry 4.0 providing
new production methodologies




What are the challenges of CPSs?

« Software is everywhere embedded in
heterogeneous loT devices

« Applications are part of CPSs and are disperse
running in the cloud or edge

* Industry 4.0 describes the trend towards
automation and data exchange in manufacturing
diverse technologies and processes

« Customers demand high quality customized
services

« Systems should cope with unplanned and often
unforeseen situations, the known un-knowns



CPS can be a complex puzzle
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Complexity can be faced with variability modeling?
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CPS Complexity —= Variability modeling

tackled

Variability modeling helps to deal with CPSs

Complexity




Variability dimensions of CPS

Variabilities in CPS
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CPS variability modeling

* Multi-product line activities

a
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« Mapping of variability models _ VM, |

« Synchronization of variabilty —

models /

* Propagation of changes,
consistency

« Reduce scalability problems

« Configuration of CPS

 Quality of configurations/

« CPS requirements

Conf,

Conf,

Conf,

1 VM



Automation of power distribution KA
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Open-LV project

* Open software platform in
electricity substations that
can monitor substation
electricity demand.

e The LV-CAP™ platform
integrates third party
products to enable network
control and more
participation in network
management.
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OPENLV - OPENING UP THE SMART GRID

Distribution Network Industry & Customers &
Operator Research Communities

The Open LV Solution The Open LV Solution

L\ L LV
Substation . . Substation
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Infrastructure variability

* Physical infrastructure -
e Physical structure of the system Physical sensing Actuation information

* Industry 4.0 (e.qg. electrical substation)

* Robotics (e.g. Agriculture robots)
* Network connectivity

+ Data terminal equipments Object domain

« Software infrastructure

()
Physical world ( $
* Operating system s

e Platforms

e Virtualization
13



Physical infrastructure variability

Models world

Physical world
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Infrastructure
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- Network cards/interfaces
- Operating system
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- Positioning

- Sensing units
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Physical infrastructure
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Physical infrastructure is
shared

Physical aware domain
engineering

Configuration layer by layer

CPS Domain Engineering

Specific CPS Domain
Engineering

Power distribution
system

Application Engineering

OpenLV, smart home
power control, ....




How have we modeled physical variability?

« WiFi modeled with three
different meanings

« No semantic information
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Structural variability

Clonable features
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 Features that represent real world objects
(e.g. sensors, mobile phones, home
appliances, etc.)

 Each object will embed software, but
adapted to the concrete role of the object
inside the global system

A

Objectl
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Configuration with
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Software infrastructure variability Software

infrastructure
« Operating system .S
* Programming model deployment
« Programming languages programming constraints ?
« Supported MCU vendors
89
* License type software installation requirements

ooooo

* Virtualization CPS platforms

« Configuring multiple devices: SDN and NFS . . .
Virtualization
* Virtual machines

 Platforms Operating System

20+ Cloud and loT platforms proliferation



Software infrastructure variability
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Layered architecture mapping

CPS platforms

Virtualization

Operating System

Software infrastructure

Operatlng system
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Software infrastructure variability

-

Application layer

l 1 Network configuration and X
management interface

Network-related
SON control control (routing.
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Software infrastructure variability
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Why an infrastructure variability model?
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Represent the deployment infrastructure

To define CPS variability in computational resources and
communication protocols

To configure the specific technology used in a concrete CPS

To help to configure the software components/services of the
applications to be deployed there

To represent the logic and physical connections among the
equipments that conform a CPS

To express that a common infrastructure is shared by several
applications/services

To handle the insfrastructure evolution by the domain engineer
(only once, reuse)

¢

Infrastructure
variability




Process variability
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Family of common processes used in
CPSs

Variability in tasks, subtasks,
algorithms, computation, .....

Each task variant can require different
resources and capacity of the devices

Use classical models to specify which
tasks can be implemented in parallel,
sequence

Tasks must be deployed in cloud
datacenter, or can migrate to
another device, ...

Input data

Process
variability

O

D*Actionz @

S

output data




Process variability

Process internals

Specific CPS l \u

process Input[l ] Output[1..*]

VAN N

Data Storage Loopba\ék LV-CAP InputValue OuputVa|ue: Status
DataType DataType

Services
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* feed
Management App deployment
Cloud-based | | Blockchain-based sergvice > sefvic»:a Cloud-based
->cloud server
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Data
Storage

output data
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Mang
service
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Data variability
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Data storage
Data types
Different data access models

The data is produced by
processes

Some of the process data is
part of the context

Relationships with quality
attributes

variability

Physical
variability

Process
variability

Environment
variability

QoS
variability



Data variability

« Data storage related with
physical variability

Data variability

|

Storage model Access model Data

: Database ! Blockchain RAM memory P2P Event ”Fre.qqencyml CVaIue:DataType)
________ / \ . FreqValue=..
File >torage Consensus || Transaction Message Rt :
29 model




Quality attributes variability

Usability

-logging,
feedback,...

Performance Sustainability

-latency, response -energy
time,... efficiency, .....

Functional QAs —> Software architecture

Measure QAs : Optimization

29



Quality attributes variability

o CPS architecture should meet

 Soft goals QA family
« Functional quality attributes \
Soft goals QAs[1..*]
Optitr?“i;:tlon ~ QA, P QAn FQAIV - FQAN
Maximiz; Min};nize :Il'radeoff Frenactttijt:Z:l Us;ge model

. Imp‘ementation options should map architecture goals

- High diversity of Implementation options

- * Need to quantify quality attributes for each implementation option




QA family

Soft goals
- 2

o
mize Tradeoff

QAs[1..*]

Usage context Implementation

VAN /

Var context Operations Data types Parameters

Frameworks/
Contextual Hely APIS

h FQAs Implementation

31



Functional quality attributes in Open LV
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Open LV software architecture and FQAs

Sensor app Algorithm app
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Open LV software architecture and FQAs
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QAs and feature models
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Extend FMs to model attributes

Represent the generation of the
best configuration as a
optimization problem

« E.g. what is the configuration of
the encryption component that
consumes the least power?

Soft goals

N

Optimization ~
type

Enargy

U

Minimize




QAs and feature models

Mobile Phone

T

Hardware

Screen

Energy = 10

Energy=4

Energy=3 ‘
: Performance=-3 : 0T T T :

Total performance -> sum c.performance

Total energy -> sum c.energy

<< min aPhone.total energy >>

36 << max aPhone.performance > >
|

CPU .. i ..................

' Performance = 15 : :
TR - Performance =20 :

Clafer case study

Software

l

Extra CPU

Browser

Energy =2

* One feature ->qga value
(limited)



QAs and feature models

Total performance -> sum c.performance Mobile Phone
Total energy -> sum c.energy / \
<< min aPhone.total energy >> Hardware Software
<< max aPhone.performance >> {| l
Screen CPU .......................... Extra CPU Browser
Energy 10 .........................
Performa nce = 15  Energy =2 :
L - i Performance =20
Energy =3 Enefrgy =4 e
. Performance =-3 : . Pertormance =-2

o Energy depends on One feature '>qa value

(limited)
 usage frequency of browser

One configuration -> ga value

 Graphics displayed, ....
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CPS family

Soft goals CPS features
ptimization . o -
A Physical var. Process var.
t\/pi \Ci : Y infrastructure var. Data var. FQAs var.
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Developers @
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Limitations of HADAS approach

Energy [}

V)

Contextual
Operation and Data Type ConfigN| Usage Context Implementation
. [ON Contextual | Contextual | Contextual | Configurable
Config3 |gN Variables | Operations | Data Types J Parameters Framewarks
Config2|g3
Configlig2|g3

gl

-
Contextual Variable

Contextual Variable

g2

gl

Contextual Variable
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Challenges:

« Measure QAs of every configuration is an intractable task

* Numerical features support of automated solvers is limited

Configurations



Deployment variability

 Generate the optimum CPS, configuration CPS,, configuration

configuration of a distributed ] [ ]
CPS | I/

|||l |||\||
X \ 7

e Common resources

Deployment configuration

* Physical configuration

/" Soft infrastructure configuratio}

[ ]

 Software infrastructure 4 Physical configuration\

configuration

|
L
\ 7
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Inter-variability dimensions interactions

s weaved

need
Process variability

QAs variability Data variability

Task meé
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<>

exp setup
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Infrastructure configuration

/Physical configuratioﬁ Soft infrastructure configuration\
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Variability model repository

Process Analysis  Reconfiguration
variability model A ——
QUERIES
Query by model
dimensions \ 4 QAs variability model
. Monitar
dependencies, —
Model navegation — —
Testing,
Model evolution, 6hysica| variability modelSc+~ e arevare-variabili y m
[ ]
— | | variability mode
X 7/
N A | s | O PN S |y B

\u D/
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Environment variability

« Environment data

« What elements conforms
the environment?

 What information does
the CPS receives from the
environment?

Infrastructure
configuration

45

Enrivonmental
variability

Env object [1..%]

Produced by W

Process
configuration

I "User/ambient |
L__pmdm3¢__J

variability

—_—,— e — —_————

Data model
configuration



Environment variability

Internal elements of the physical system are
not part of the environment

Environment vs Adaptation Context

Context config < Phy config U User config

OpenlV system
Infrastructure

Substationl

Physical
elements

\

LV Feeder

LV11k-230k

LV Network
automation unit

Transformer

LV Monitor unit
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/ Sensor unitl

Sensor unit2

«/\

Substation2

Physical
elements

Power factor
unit

N

transformer

Inside

Temperature

Outgoing
feeder

Voltage

Inside Power
transformer factor




Runtime adaptation

Analysis Reconfiguration

Process
configuration

T et

| o |

Physical sensing - Actuation)information

Monitor

Monitored
objects

Actuator objects

Env configuration | . ) Object domain
. T @
| New ol ik
| \| | | |/ | requirements Physical world
]

/\/—\/



Runtime model interactions

Self-adaptation context

Usability Energy @

- Performance@

‘ Deployment configuration

Env configuration
aw Adaptation 6hysical configuratioﬁ /Soft infrastructure configuration
h@% rules D(ijsable l—\l New
v s @ Container.

48 Dynamic Software Product Lines




Runtime model queries

QAs configuration

onfiguration

Analysis Reconfiguration

Process
onfiguration

O [

| I |

QUERIES
Where is this task
deployed?
What are the fqas

weaved?

Where is this data?
Who produce this data?
What objects are
monitored?




Solve the puzzle

Software inf - ‘

variabilty wironement
bility

Quality
2riability

Self-
adaptation
variabilty

Deployment
variabilty
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Future challenges
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Define all kinds of variabilities of CPSs

Separate if posible in different variability models

Add semantic to those models

Define formal relationships inter-models, and inter-configurations

Store models in a repository and define evolution, navigation, ....

Define repositories containing QAs data

Reduce the number of configurations to measure QAs with numerical features

Define advanced query operators
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