
SAT Oracles, for NP-Complete Problems and
Beyond

Combinatorial problem solving using SAT solvers

Daniel Le Berre

CNRS - Université d’Artois

ECSA/SPLC 19, Paris, September 11-13, 2019

1/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Purpose of this talk

I Using SAT solvers are black boxes

I Importance of the interaction with the solver

I Importance of encodings

I When encodings are too large

2/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Outline

SAT, SAT Oracle, SAT Solver

Importance of the interaction with the solver

Importance of the encodings

When encodings are too large

The SAT problem: textbook definition

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : Is there an assignment of the n variables that satisfies all
those clauses?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

4/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

The SAT problem: textbook definition

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : Is there an assignment of the n variables that satisfies all
those clauses?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

4/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

The SAT problem solver: practical point of view 1/3

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else answer UNSAT.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, one answer is {a, b, c}, for C2 the answer is UNSAT.

The SAT problem solver: practical point of view 1/3

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else answer UNSAT.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, one answer is {a, b, c}, for C2 the answer is UNSAT.

The SAT problem solver: practical point of view 1/3

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else answer UNSAT.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, one answer is {a, b, c}, for C2 the answer is UNSAT.

SAT answers can be checked: trusted model oracle

The SAT problem solver: practical point of view 2/3

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, one answer is {a, b, c}, for C2 the answer is C2

The SAT problem solver: practical point of view 2/3

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, one answer is {a, b, c}, for C2 the answer is C2

The SAT problem solver: practical point of view 2/3

Definition

Input : A set of clauses C built from a propositional language with
n variables.
Output : If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, one answer is {a, b, c}, for C2 the answer is C2

UNSAT core may explain inconsistency if much smaller than C :
informative UNSAT oracle

The SAT problem solver: practical point of view 3/3

Definition

Allow the solver to decide the satisfiability of a formula with:

I increasing number of constraints

I provided some “assumptions” are satisfied

Example

C = {s1 ∨ ¬a ∨ b, s1 ∨ ¬b ∨ c , s2 ∨ a, s2 ∨ ¬c}

C1 ≡ C ∧ ¬s1 ∧ s2

C2 ≡ C ∧ ¬s1 ∧ ¬s2

The SAT problem solver: practical point of view 3/3

Definition

Allow the solver to decide the satisfiability of a formula with:

I increasing number of constraints

I provided some “assumptions” are satisfied

Example

C = {s1 ∨ ¬a ∨ b, s1 ∨ ¬b ∨ c , s2 ∨ a, s2 ∨ ¬c}

C1 ≡ C ∧ ¬s1 ∧ s2

C2 ≡ C ∧ ¬s1 ∧ ¬s2

The SAT problem solver: practical point of view 3/3

Definition

Allow the solver to decide the satisfiability of a formula with:

I increasing number of constraints

I provided some “assumptions” are satisfied

Example

C = {s1 ∨ ¬a ∨ b, s1 ∨ ¬b ∨ c , s2 ∨ a, s2 ∨ ¬c}

C1 ≡ C ∧ ¬s1 ∧ s2

C2 ≡ C ∧ ¬s1 ∧ ¬s2

The solver is considered as a stateful system: as long as the
constraints are satisfiable, learn clauses can be kept: incremental
SAT oracle

A short history of SAT in one slide

I 60’s First algorithms [DP60,DLL62,Robinson65]
DP + DLL = DPLL

I 70’s SAT is NP-complete [Cook71]
SAT is one of the simplest hard problems in CS

I 90’s Applications, Solvers, Competitions
Planning as Satisfiability, Alloy, Bounded Model Checking
Solvers available in source (GRASP, SATO, RELSAT,
WALKSAT, and many more)
Padderborn (92), DIMACS@Rutgers (93) and Beijing (96)

I 00’s Revolution, Competitions, Adoption
Chaff (2001) and Minisat (2003)
Yearly competition or race
SAT increasingly used both in academia and industry

I 10’s NP and Beyond NP
MAXSAT, QBF
Largest mathematical proof (Pythagorean triples, 200TB)

FUN FACT: comparing computer vs human execution time

In the present paper, a uniform proof procedure for quan-
tification theory is given which is feasible for use with some
rather complicated formulas and which does not ordinarily
lead to exponentiation. The superiority of the present pro-
cedure over those previously available is indicated in part
by the fact that a formula on which Gilmore’s routine for
the IBM 704 causes the machine to compute for 21 min-
utes without obtaining a result was worked successfully by
hand computation using the present method in 30 minutes
[Davis and Putnam, 1960].

The well-formed formula (...) which was beyond the scope
of Gilmore’s program was proved in under two minutes with
the present program [Davis et al., 1962]

9/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Outline

SAT, SAT Oracle, SAT Solver

Importance of the interaction with the solver

Importance of the encodings

When encodings are too large

How to solve MaxSat MinUnsat with SAT?

I Associate to each clause a weight (penalty) wi taken into
account if the clause is violated: Soft clauses S .

I Special weight (∞) for clauses that cannot be violated: hard
clauses H

Definition (Partial Weighted MaxSat)

Find a model M of H that minimizes weight(M, S) such that:

I weight(M, (ci ,wi)) = 0 if M satisfies ci , else wi .

I weight(M,S) =
∑

wc∈S weight(M,wc)

Simply called MaxSAT if k = 1 and H = ∅

How to solve MaxSat MinUnsat with SAT?

I Associate to each clause a weight (penalty) wi taken into
account if the clause is violated: Soft clauses S .
(¬a ∨ b, 6) ∧ (¬b ∨ c , 8)

I Special weight (∞) for clauses that cannot be violated: hard
clauses H

Definition (Partial Weighted MaxSat)

Find a model M of H that minimizes weight(M, S) such that:

I weight(M, (ci ,wi)) = 0 if M satisfies ci , else wi .

I weight(M,S) =
∑

wc∈S weight(M,wc)

Simply called MaxSAT if k = 1 and H = ∅

How to solve MaxSat MinUnsat with SAT?

I Associate to each clause a weight (penalty) wi taken into
account if the clause is violated: Soft clauses S .
(¬a ∨ b, 6) ∧ (¬b ∨ c , 8)

I Special weight (∞) for clauses that cannot be violated: hard
clauses H (a,∞) ∧ (¬c ,∞)

Definition (Partial Weighted MaxSat)

Find a model M of H that minimizes weight(M, S) such that:

I weight(M, (ci ,wi)) = 0 if M satisfies ci , else wi .

I weight(M,S) =
∑

wc∈S weight(M,wc)

Simply called MaxSAT if k = 1 and H = ∅

How to solve MaxSat MinUnsat with SAT?

I Associate to each clause a weight (penalty) wi taken into
account if the clause is violated: Soft clauses S .
(¬a ∨ b, 6) ∧ (¬b ∨ c , 8)

I Special weight (∞) for clauses that cannot be violated: hard
clauses H (a,∞) ∧ (¬c ,∞)

Definition (Partial Weighted MaxSat)

Find a model M of H that minimizes weight(M, S) such that:

I weight(M, (ci ,wi)) = 0 if M satisfies ci , else wi .

I weight(M,S) =
∑

wc∈S weight(M,wc) weight of {a,¬b,¬c}
is 6

Simply called MaxSAT if k = 1 and H = ∅

Linear Search for solving MaxSAT

x6, x2 ¬x6, x2 ¬x2, x1 ¬x1

¬x6, x8 x6,¬x8 x2, x4 ¬x4, x5

x7, x5 ¬x7, x5 ¬x5, x3 ¬x3

Example CNF formula (k = 1 for each clause, not displayed)

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

Add selector or blocking variables bi

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

Formula is SAT; eg model M contains
b1,¬b2, b3,¬b4, b5,¬b7,¬b8,¬b9, b10,¬b11, b12

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

∑12
i=1 bi < 5

Bound the number of constraints to be relaxed: |M ∩ B| = 5

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

∑12
i=1 bi < 5

Formula is (again) SAT; eg model contains
b1,¬b2,¬b3,¬b4,¬b5,¬b7,¬b8,¬b9,¬b10,¬b11, b12

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

∑12
i=1 bi < 2

Bound the number of constraints to be relaxed |M ∩ B| = 2

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

∑12
i=1 bi < 2

Instance is now UNSAT

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Linear Search for solving MaxSAT

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

∑12
i=1 bi < 2

MaxSAT solution is |ϕ| − |M ∩ B| = 12− 2 = 10

12/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Note that ...

I No initial upper or lower bounds: the first model provides a
first upper bound.

I In practice, the objective function can be used to guide the
search

I The procedure follows a SAT, SAT, SAT, SAT, ..., UNSAT
pattern with linear search

I Binary search is possible but:
I SAT answer is usually faster than UNSAT
I the solver must be reset in case on unsatisfiability

I In lucky case, two calls to the SAT solver are sufficient (one
SAT + one UNSAT).

I Used in Sat4j since 2006, was state-of-the-art in 2009

I Main issue: how to represent the bound constraint?

From Unsat Core computation to MaxSat: MSU
Z. Fu and S. Malik, On solving the partial MAX-SAT problem, in International
Conference on Theory and Applications of Satisfiability Testing, August 2006, pp.
252-265.

Other SAT-based approaches in practical Max Sat solving rely on
unsat core computation [Fu and Malik 2006]:

I Compute one unsat core C ′ of the formula C

I Relax it by replacing C ′ by { ri ∨ Ci |Ci ∈ C ′}
I Add the constraint

∑
ri ≤ 1 to C

I Repeat until the formula is satisfiable

I If MinUnsat(C) = k , requires k + 1 loops.

Many improvement since then (PM1, PM2, MsUncore, etc): works
for Weighted Max Sat, reduction of the number of relaxation
variables, etc.

14/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1 ¬x1

¬x6, x8 x6,¬x8 x2, x4 ¬x4, x5

x7, x5 ¬x7, x5 ¬x5, x3 ¬x3

Example CNF formula

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1 ¬x1

¬x6, x8 x6,¬x8 x2, x4 ¬x4, x5

x7, x5 ¬x7, x5 ¬x5, x3 ¬x3

Formula is UNSAT; Get unsat core

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1, b1 ¬x1, b2

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5 ¬x7, x5 ¬x5, x3, b5 ¬x3, b6

∑6
i=1 bi ≤ 1

Add blocking variables and AtMost1 constraint

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1, b1 ¬x1, b2

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5 ¬x7, x5 ¬x5, x3, b5 ¬x3, b6

∑6
i=1 bi ≤ 1

Formula is (again) UNSAT; Get unsat core

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1, b9 ¬x1, b2, b10

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5, b13 ¬x3, b6, b14

∑6
i=1 bi ≤ 1

∑14
i=7 bi ≤ 1

Add new blocking variables and AtMost1 constraint

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1, b9 ¬x1, b2, b10

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5, b13 ¬x3, b6, b14

∑6
i=1 bi ≤ 1

∑14
i=7 bi ≤ 1

Instance is now SAT

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik’s Algorithm: msu1.0

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1, b9 ¬x1, b2, b10

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5, b13 ¬x3, b6, b14

∑6
i=1 bi ≤ 1

∑14
i=7 bi ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

15/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Note that ...

I Unsat core may not be minimal

I Nice property: if k constraints must be relaxed, then the
procedure requires exactly k + 1 calls to the SAT solver.

I How to represent the cardinality constraints?

16/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MaxHS: SAT and MIP solver interplay
Jessica Davies, Fahiem Bacchus: Solving MAXSAT by Solving a Sequence of Simpler
SAT Instances. CP 2011: 225-239

I Core guided MAXSAT solver can be seen as a two step
procedure:
I Discover UNSAT cores of the formula
I Stop as soon as one minimal Hitting Set of the cores satisfies

the formula

I The size of the HS provides the number of constraints to relax

I May require to enumerate all MUS of a formula

I Or less if lucky

17/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MaxHS principle

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

Cores = {} HS = ∅

18/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MaxHS principle

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

{{b1, b2, b3, b4, b5, b6}} HS = {b4}

18/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MaxHS principle

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

{{b1, b2, b3, b4, b5, b6}, {b1, b2, b7, b8}} HS = {b1}

18/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MaxHS principle

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

{{b1, b2, b3, b4, b5, b6}, {b1, b2, b7, b8}, {b11, b12, b5, b6}}
HS = {b2, b5}

18/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MaxHS principle

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1 ¬x1, b2

¬x6, x8, b9 x6,¬x8, b10 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5 ¬x3, b6

Instance is SAT. MaxSAT solution is 12− |{b2, b5}| = 10

18/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

3 ways to solve the same [optimization] problem

I Take advantage of SAT solvers feedback: model or core

I No single approach outperforms the others

I Core-guided and MaxHS work best currently on ”application”
benchmarks (not crafted ones)

Linear Search or Core-Guided approaches require encoding
cardinality constraints in CNF (or use native support for such
constraints as found in Sat4j)

19/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Outline

SAT, SAT Oracle, SAT Solver

Importance of the interaction with the solver

Importance of the encodings

When encodings are too large

Quick question for the audience

How would you encode

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 1

as a CNF?

Quick question for the audience

How would you encode

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 1

as a CNF?

¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x1 ∨ ¬x4, ¬x1 ∨ ¬x5,¬x1 ∨ ¬x6,
¬x1 ∨ ¬x7, ¬x1 ∨ ¬x8, ¬x1 ∨ ¬x9, ¬x1 ∨ ¬x10,
¬x2 ∨ ¬x3, ¬x2 ∨ ¬x4, ¬x2 ∨ ¬x5,¬x2 ∨ ¬x6,
¬x2 ∨ ¬x7, ¬x2 ∨ ¬x8, ¬x2 ∨ ¬x9, ¬x2 ∨ ¬x10,
¬x3 ∨ ¬x4, ¬x3 ∨ ¬x5,¬x3 ∨ ¬x6, ¬x3 ∨ ¬x7, ¬x3 ∨ ¬x8,
¬x3 ∨ ¬x9, ¬x3 ∨ ¬x10,
¬x4∨¬x5, ¬x4∨¬x6, ¬x4∨¬x7, ¬x4∨¬x8, ¬x4∨¬x9, ¬x4∨¬x10

¬x5 ∨ ¬x6, ¬x5 ∨ ¬x7, ¬x5 ∨ ¬x8, ¬x5 ∨ ¬x9, ¬x5 ∨ ¬x10,
¬x6 ∨ ¬x7, ¬x6 ∨ ¬x8, ¬x6 ∨ ¬x9, ¬x6 ∨ ¬x10,
¬x7 ∨ ¬x8, ¬x7 ∨ ¬x9, ¬x7 ∨ ¬x10,
¬x8 ∨ ¬x9, ¬x8 ∨ ¬x10, ¬x8 ∨ ¬x10.

Pairwise encoding, 45 binary clauses

Some known encodings for cardinality constraints

Short list of known encodings :

I Pairwise encoding [Cook et al., 1987]

I Nested encoding

I Two product encoding [Chen, 2010]

I Sequential encoding [Sinz, 2005]

I Commander encoding [Frisch and Giannaros, 2010]

I Ladder encoding [Gent and Nightingale, 2004]

I Adder encoding [Eén and Sörensson, 2006]

I Cardinality Networks [Aśın et al., 2009]

I ...

22/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Two product encoding
Chen, J.-C.: A new sat encoding of the at-most-one constraint. In Proc. of the Tenth
Int. Workshop of Constraint Modelling and Reformulation, 2010

c1 c2 c3 c4

r1

r2

r3

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10

AMO

AMO

Selection clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

final AtMost-1
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

encoding
10∑
i=1

xi ≤ 1

23/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Two product encoding
Chen, J.-C.: A new sat encoding of the at-most-one constraint. In Proc. of the Tenth
Int. Workshop of Constraint Modelling and Reformulation, 2010

c1 c2 c3 c4

r1

r2

r3

x1 x2 x3 x4

x5 x6 x8

x9 x10

x7

AMO

AMO

Selection clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

final AtMost-1
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

encoding
10∑
i=1

xi ≤ 1

23/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Two product encoding
Chen, J.-C.: A new sat encoding of the at-most-one constraint. In Proc. of the Tenth
Int. Workshop of Constraint Modelling and Reformulation, 2010

c1 c2 c4

r1

r3

c3

r2

x1 x2 x3 x4

x5 x6 x8

x9 x10

x7

AMO

AMO

Selection clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

final AtMost-1
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

encoding
10∑
i=1

xi ≤ 1

23/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Two product encoding
Chen, J.-C.: A new sat encoding of the at-most-one constraint. In Proc. of the Tenth
Int. Workshop of Constraint Modelling and Reformulation, 2010

c1 c2 c3 c4

r1

r2

r3

x1 x2 x3 x4

x5 x6 x8

x9 x10

x7

AMO

AMO

Selection clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

final AtMost-1
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

encoding
10∑
i=1

xi ≤ 1

23/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Two product encoding
Chen, J.-C.: A new sat encoding of the at-most-one constraint. In Proc. of the Tenth
Int. Workshop of Constraint Modelling and Reformulation, 2010

c1 c2 c3 c4

r1

r2

r3

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10

AMO

AMO

Selection clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

final AtMost-1
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

encoding
10∑
i=1

xi ≤ 1

23/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Two product encoding
Chen, J.-C.: A new sat encoding of the at-most-one constraint. In Proc. of the Tenth
Int. Workshop of Constraint Modelling and Reformulation, 2010

c1 c2 c3 c4

r1

r2

r3

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10

AMO

AMO

Selection clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

final AtMost-1
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

encoding
10∑
i=1

xi ≤ 1 29 binary clauses

23/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Cardinality/Pseudo-Boolean constraints in CNF

I Translation in CNF without adding new variables often not an
option

I Various encodings available, with different properties (number
of additional variables, number of generated clauses, size of
generated clauses, preserve or not arc consistency, etc.)

I Different solvers may behave differently on different encodings
(e.g. because of specific management of binary clauses).

I For a survey of the effect of various encodings for MaxSat, see
[Martins et al., 2012].

24/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Cardinality/Pseudo-Boolean constraints ad hoc

Other option: do not encode! (our approach in Sat4j)

I Space efficient

I Can use extended reasoning: e.g. Generalized Resolution
[Hooker, 1988]

I Cannot reuse off-the-shelf solver

I Requires to maintain the constraints in the solver

When the input is in CNF, retrieve cardinality constraints
[Biere et al., 2014].

25/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Outline

SAT, SAT Oracle, SAT Solver

Importance of the interaction with the solver

Importance of the encodings

When encodings are too large

Sometimes the CNF encoding is just too large

I It is often the case that CNF encodings reach GB of space

I A popular technique in that case is to provide only parts of
the constraints to the solver

I If the set of constraints is UNSAT, the original problem is
UNSAT

I If the set of constraints is SAT, the model is checked against
the original problem

I If the model is a solution of the original problem, the problem
is solved (Lucky Outcome

I Else new constraints (clauses) are added to prevent such kind
of spurious solution (Refinement)

Counter Example Guided Abstraction Refinement

27/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

CEGAR using under-abstractions
Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Helmut Veith:
Counterexample-Guided Abstraction Refinement. CAV 2000: 154-169

CEGAR-under

ψ ← φ̌cegar(φ)

check(ψ)UNSAT λ |=? φ

ψ ← refine(ψ)

SAT
unsat

sat,λ yes

no

Example

Hamiltonian cycle problem

CEGAR using over-abstractions

CEGAR-over

cegar(φ) ψ ← φ̂

check(ψ)SAT ψ ≡?
sat φ UNSAT

ψ ← refine(ψ)

sat

unsat yes

unk.

Example

Planning problem, by increasing step by step the horizon; Bounded
Model Checking

29/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

CounterExample Guided Abstraction Refinement

Advantages

I If problem mainly satisfiable: CEGAR-over

I If problem mainly unsatisfiable: CEGAR-under

I When check improves, CEGAR improves

I Many applications already use CEGAR

Drawbacks
I Not efficient when 50/50 chances of being SAT/UNSAT

I Not efficient when we need many refinement steps

30/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Recursive Explore and Check Abstraction Refinement
Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, Valentin Montmirail: A Recursive
Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem. IJCAI
2017: 674-680

RECAR

recar(φ) ψ ← φ̂

check(ψ)SAT ψ ← refine(ψ)

ψ ≡?
sat φ UNSAT

RC (φ, φ̌)

recar(φ̌) no

sat

unsat

yes

unk.

yes

unsat

sat

Recursive Explore and Check Abstraction Refinement

RECAR[Lagniez et al., 2017]

I 2 levels of abstractions
I One at the Oracle level (check(ψ))
I One at the Domain level (recursive call)

I Efficient even when 50/50 chance of being SAT/UNSAT

I When check improves, RECAR improves

I The return of the recursive call can reduce the number of
refinements

I SAT and UNSAT shortcuts can be inverted if needed

I Totally generic, can change SAT solver by QBF/SMT/FO
solver

32/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Application to Modal Logic K

RECAR for Modal Logic K

I Modal Logic K is PSPACE-complete
[Ladner, 1977, Halpern, 1995]

I What is Modal Logic K?

I How we over-approximate a formula φ?

I How we under-approximate a formula φ?

I Is it competitive against a CEGAR approach?

I Is it competitive against the state-of-the-art approaches?

33/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Modal Logic

Modal Logic = Propositional Logic + 2 and 3

Modal Logic

I 2φ means φ is necessarily true

I 3φ means φ is possibly true

3φ↔ ¬2¬φ
2φ↔ ¬3¬φ

34/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Satisfiability of Modal Logic formulas

φ1 = 2()

φ2 = 23()

φ3 = 3(∧3¬)

φ4 = (∨ ∨)

φ5 = 33(∧2¬)

w0

,

w1

,

w2

w3

Figure: Example K

35/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Satisfiability of Modal Logic formulas

φ1 = 2()

φ2 = 23()

φ3 = 3(∧3¬)

φ4 = (∨ ∨)

φ5 = 33(∧2¬)

w0

,

w1

,

w2

w3

Figure: Example K

35/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MoSaiC: Under-Approximation (modal logic level)

Suppose we want to solve the formula below, with χ huge but
satisfiable...

∧

3

p

2

¬p

χ

Worst case for CEGAR using an over approximation, i.e. unrolling
the Kripke structure

36/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MoSaiC: Under-Approximation (modal logic level)

∧

∨

¬s1 3

p

∨

¬s2 2

¬p

∨

¬s3

χ

Modern SAT solvers returns ‘the reason’ why a formula with n
worlds is unsatisfiable (core = {s1, s2})

37/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MoSaiC: Under-Approximation (modal logic level)

We want to cut what is not part of the ‘unsatisfiability’ (si 6∈ core)

∧

∨

¬s1 3

p

∨

¬s2 2

¬p

We just create φ̌ smaller than φ and easier to solve.
The function RC from RECAR just says here: did we cut
something ?

38/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MoSaiC: RECAR for Modal Logic K

39/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

MoSaiC: RECAR for Modal Logic K

40/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Explanation of the Cactus-Plot

41/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Some tweaks improve the results

42/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conclusion

I SAT-based problem solving similar to assembly language
programming
I limited expressiveness
I highly efficient
I not for casual programmers

I Practical SAT solving is about
I Encoding efficiently problems into CNF
I Designing innovative SAT-based algorithms
I Improving SAT solvers
I Trusting solvers as efficient search space explorators
I Being optimistic (versus worst case complexity)

Conclusion

I SAT-based problem solving similar to assembly language
programming
I limited expressiveness
I highly efficient
I not for casual programmers

I Practical SAT solving is about
I Encoding efficiently problems into CNF
I Designing innovative SAT-based algorithms
I Improving SAT solvers
I Trusting solvers as efficient search space explorators
I Being optimistic (versus worst case complexity)

Conclusion

I SAT-based problem solving similar to assembly language
programming
I limited expressiveness
I highly efficient
I not for casual programmers

I Practical SAT solving is about
I Encoding efficiently problems into CNF
I Designing innovative SAT-based algorithms
I Improving SAT solvers
I Trusting solvers as efficient search space explorators
I Being optimistic (versus worst case complexity)

Definition (SAT-based problem solving)

I if proposal works, done

I else, try again, changing something
(approach, encoding, solver, computers)
driven by cause of failure

Thanks for your attention

Questions?

44/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Bibliography I

Aśın, R., Nieuwenhuis, R., Oliveras, A., and
Rodŕıguez-Carbonell, E. (2009).
Cardinality networks and their applications.
In Kullmann, O., editor, SAT, volume 5584 of Lecture Notes in
Computer Science, pages 167–180. Springer.

Biere, A., Berre, D. L., Lonca, E., and Manthey, N. (2014).
Detecting cardinality constraints in CNF.
In Sinz, C. and Egly, U., editors, Theory and Applications of
Satisfiability Testing - SAT 2014 - 17th International
Conference, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume
8561 of Lecture Notes in Computer Science, pages 285–301.
Springer.

45/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Bibliography II

Chen, J.-C. (2010).
A new sat encoding of the at-most-one constraint.
In In Proc. of the Tenth Int. Workshop of Constraint
Modelling and Reformulation.

Cook, W., Coullard, C., and Turán, G. (1987).
On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25 – 38.

Eén, N. and Sörensson, N. (2006).
Translating pseudo-boolean constraints into sat.
JSAT, 2(1-4):1–26.

46/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Bibliography III

Frisch, A. and Giannaros, P. (2010).
Sat encodings of the at-most-k constraint: Some old, some
new, some fast, some slow.
In Proceedings of the The 9th International Workshop on
Constraint Modelling and Reformulation (ModRef 2010).

Gent, I. P. and Nightingale, P. (2004).
A new encoding of alldifferent into sat.
Proc. 3rd International Workshop on Modelling and
Reformulating Constraint Satisfaction Problems, pages 95–110.

47/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Bibliography IV

Halpern, J. Y. (1995).
The Effect of Bounding the Number of Primitive Propositions
and the Depth of Nesting on the Complexity of Modal Logic.
Artificial Intelligence, 75(2):361–372.

Hooker, J. N. (1988).
Generalized resolution and cutting planes.
Ann. Oper. Res., 12(1-4):217–239.

Ladner, R. E. (1977).
The Computational Complexity of Provability in Systems of
Modal Propositional Logic.
SIAM J. Comput., 6(3):467–480.

48/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Bibliography V

Lagniez, J.-M., Le Berre, D., de Lima, T., and Montmirail, V.
(2017).
A Recursive Shortcut for CEGAR: Application To The Modal
Logic K Satisfiability Problem.
In Proc. of IJCAI’17.

Martins, R., Manquinho, V. M., and Lynce, I. (2012).
Parallel search for maximum satisfiability.
AI Commun., 25(2):75–95.

Sinz, C. (2005).
Towards an optimal cnf encoding of boolean cardinality
constraints.
In van Beek, P., editor, CP, volume 3709 of Lecture Notes in
Computer Science, pages 827–831. Springer.

49/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

Bibliography VI

50/50

http://www.cnrs.fr/
http://www.univ-artois.fr/

	SAT, SAT Oracle, SAT Solver
	Importance of the interaction with the solver
	Importance of the encodings
	When encodings are too large

