
Interoperability of Software Product Line Variants
Ferruccio Damiani

University of Torino

Torino, Italy

ferruccio.damiani@unito.it

Reiner Hähnle

Technische Universität Darmstadt

Darmstadt, Germany

haehnle@cs.tu-darmstadt.de

Eduard Kamburjan

Technische Universität Darmstadt

Darmstadt, Germany

kamburjan@cs.tu-darmstadt.de

Michael Lienhardt

University of Torino

Torino, Italy

michael.lienhardt@unito.it

ABSTRACT
Software Product Lines are an established mechanism to describe

multiple variants of one software product. Current approaches

however, do not offer a mechanism to support the use of multiple

variants from one product line in the same application. We experi-

enced the need for such a mechanism in an industry project with

German Railways where we do not merely model a highly variable

system, but a system with highly variable subsystems. We present

the design challenges that arise when software product lines have

to support the use of multiple variants in the same application,

in particular: How to reference multiple variants, how to manage

multiple variants to avoid name clashes, and how to keep multiple

variants interoperable.

1 MOTIVATION
The challenge case we pose here is motivated by an industrial

project with German Railways (DB Netz AG) [11] that includes a

detailed, executable model of railway infrastructure.

Rail networks consist of a large number of technical components,

including signals, switches, tracks, magnets, axle counters, and so

on. Some kinds of components show a high degree of variability.

For example, signals can be based on light or on shape, they can be

arranged in different ways, they can be controlled manually, me-

chanically, electrically, or digitally, etc. Dozens, perhaps hundreds,

of different types of railway components exist. To manage this

variability, it is advisable to arrange components as a product line.

For example, product line SignalLine is used to produce different

variants of railway signals, while product line SwitchLine is used

for switches. Each of these product lines may have twenty or more

features (and comprise hundreds of products), but to keep things

simple, we use merely two features and two products per product

line in our example: a signal is either a main or a pre-signal (the

latter announces the signal aspect of the main signal to the train

driver), a switch is either an electric switch or a manual switch.

Following the syntax of [3], we can represent these product lines

as follows:

SPLC’18, 10–14 September, 2018, Gothenburg, Sweden
©2018.

productline SignalLine;
features Main, Pre;
product MainSignal(Main);
product PreSignal(Pre);

productline SwitchLine;
features Electric, Manual;
product ESwitch(Electric);
product MSwitch(Manual);

In this syntax, productline starts the declaration of a new prod-

uct line; features declares the features of the product line; and

product declares a product of the product line. For example, product
MainSignal(Main) declares the product MainSignal and states that

it corresponds to the selection of the feature Main.

Stations consist of several signals and switches (plus other ele-

ments, such as straight line tracks, platforms, bumpers, etc., which

we ignore here). Again, there are many station types (terminals,

shunting stations, . . . ), so it makes sense to arrange stations as a

product line as well, say, StationLine. But now we face a problem:

a station does not merely comprise switches as well as signals, but

typically it also contains different types of signals and switches.

Hence we need to address how a variant of StationLine can make

use of multiple product variants.
Existing product line models and approaches seem to address

the generation of a single product variant. Our use case requires

to manage the interoperability between multiple product variants
from one or more product lines within a single application.

Indeed, the challenge case presented here shifts the focus of prod-

uct line-based development from highly variable systems to systems

with highly variable subsystems. As our case study shows, multiple

subsystems and, hence, multiple product lines arise naturally in

real world systems. As a consequence, the management of multiple

variants from one product line must interface with an environment

that comprises further, multiple product lines.

The challenge proposed here is the question of how to handle

multiple variants of one product line. This must be solved before

the natural next step, multiple variants from different interdepen-

dent product lines can be taken. Hence, we discuss Multi Software

Product Lines (MPLs) [9, 13, 16] only from the perspective of their

future extension relative to the challenge presented here.

Our perspective entails that it is not sufficient to look at the

variability aspect when designing product lines. Rather, it is as well



SPLC’18, 10–14 September, 2018, Gothenburg, Sweden F. Damiani et al.

necessary to address the question ofmodularity. This is convention-
ally done at the granularity of architectural components such as

interfaces, classes, traits, etc. Our case study shows that, whenever

a product line is responsible for a clearly defined subsystem, we

must also have concepts that allow to manage its relation to other

sub-components within one and the same model. In other words,

it is necessary to lift architectural issues around modularity and

interoperability from the level of individual components to the level

of product lines. This leads to a number of design challenges that
we explain in greater detail in the following sections:

• How different variants (and their content) from a product

line can be accessed and can interoperate within the same ap-

plication (possibly being a variant of another product line)?

• How do product lines expose their variants to other applica-

tions and product lines?

• How to resolve name clashes when two variants declare the

same element (such as a class or an interface), and how these

elements can soundly interact w.r.t. the type system?

In the following sections, we illustrate the design challenges

with examples written in the ABS language [10]: ABS is an Object-

Oriented language with a syntax close to Java and is used to imple-

ment our challenge case [11]. However, we claim that the design

challenges discussed in this article are not specific to any product

line implementation approach. They arise as soon as one attempts

to combine product lines and variants of the same product line.

2 REFERENCING PRODUCT VARIANTS
The usage of multiple products requires that a product line can

be referenced and configured from outside. This raises the ques-

tion of how specific variants of classes or interfaces that realize

different products may be referred to. We present some consider-

ations around this issue, using an ad hoc syntax. Assume that a

product line for stations uses the following interfaces for signals

and switches, without specifying implementing classes:

interface Sig { ... };
interface Sw {... };

Further, assume product line SignalLine declares a class Signal

that implements Sig and SwitchLine declares a class Switch that

implements Sw, respectively. Our task is to model a station with

two signals, one pre-signal and one main signal. We discuss two

possible approaches for referencing class implementations declared

in different product variants.

2.1 Product Variant References at Types
One possiblity to syntactically reference a specific variant of class

Signal would be analogous to the use of traits in Scala [14].
1

Example 2.1. The following method of a station model adds a

pre-signal as well as a main signal and registers both as covering

signals to a switch.

1
Recall that Scala traits are in fact mixins.

Unit constructStation(Sw switch) {
Sig s1 = new Signal() from SignalLine.PreSignal;
Sig s2 = new Signal(s1) from SignalLine.MainSignal;

switch.coveredBy(s1);
switch.coveredBy(s2);

}

The intended semantics of “new C(...) from pl.prod” is that C

is the class implementation provided by product variant prod of

product line pl.

The example shows how object creation might reference classes

declared in different product variants. However, it may also be

necessary to reference interfaces and types: for example, when

interface Sig is not declared in the station product line, but in

SignalLine, then it must be annotated with the specific variant of

Sig that is to be used, as shown here:

Sig [from SignalLine.PreSignal] s1 =
new Signal() from SignalLine.PreSignal;

We expect that an approach that integrates product line configura-

tion into type references is a natural extension of the object-oriented

paradigm, but it might be very verbose.

2.2 Product Variant References at Larger
Scopes

Instead of referencing variants at the level of types, one may refer-

ence them at the level of components with a larger scope: method,

class, package, etc. Consider the following method that constructs a

station with multiple main signals sharing the same pre-signal: sev-

eral references at the type-level are replaced by a default reference

given in the method signature:

Unit constructStation() with Signal
from SignalLine.MainSignal {

Sig s1 = new Signal() from SignalLine.PreSignal;
Sig s2 = new Signal(s1);
Sig s3 = new Signal(s1);
Sig s4 = new Signal(s1); ...

}

This approach reduces the verbosity when referencing variants.

Another idea is to employ principles from Multi Product Lines [9]:

here one limits the variants that can possibly be referenced, instead

of (or in addition to) listing them explicitly. Consider the following

example, where “forces SignalLine.Pre” has the intended seman-

tics that all referenced variants of SignalLinemust have the feature
Pre. A reference to SignalLine.MainSignal would raise an error.

The following method adds pre-signals and uses the forces mecha-

nism to ensure that it is impossible to reference a main signal inside

the method body.

Unit constructPreSigs() forces SignalLine.Pre {
sig1 = new Signal() from SignalLine.PreSignal;
sig2 = new Signal() from SignalLine.PreSignal;

}



Interoperability of Software Product Line Variants SPLC’18, 10–14 September, 2018, Gothenburg, Sweden

3 EXPOSING VARIANTS
The standard interface of a product line to the outside world is a

set of products or a set of features. When composing variants from

multiple products or product lines, however, classes and interfaces

inside a product variant have to be referenced. When product lines

are used in this manner, i.e. to model subsystems, should every

declared, added or modified element be referencable from the out-

side? Consider again the SignalLine example in Section 2.1 that

declares a Signal class. Assume it also declares as well a subsidiary

signal
2
which is only added to main signals under certain circum-

stances as class SubsidiarySignal: should it be possible to reference

SubsidiarySignal as follows from StationLine?

new SubsidiarySignal from SignalLine.MainSignal;

This also raises the question how to deal with the case when a

class from a specific variant is referenced, but is not present or

modified in that variant. For example, the SubsidiarySignal class is

usually not added to SignalLine.PreSignal. What should then be

the semantics of the following?

new SubsidiarySignal from SignalLine.PreSignal;

An obvious solution would be, similar as in a module declaration,

to equip the interface of a product line or a product with an export

list of classes and interfaces being visible to the outside:

productline SignalLine exposes Signal;
features Main, Pre;
product MainSignal(Main) exposes SubsidiarySignal;
product PreSignal(Pre);

Finally, there is the question of what to do with classes and in-

terfaces that are provided in a product variant, but not needed,

i.e. referenced. In Example 2.1, the product variants PreSignal and

MainSignal might declare many other classes in addition to Signal,

but the latter is the only one being referenced. Are non-referenced

classes and interfaces always generated? If not, what is the mecha-

nism to detect whether they must be generated?

4 CO-EXISTENCE AND INTEROPERABILITY
OF PRODUCT VARIANTS

In Example 2.1, both of the products SignalLine.PreSignal and

SignalLine.MainSignal declare a class called Signal, and so putting

these two products together will result in a name clash error, as

Signal would be declared twice. Implicitly overriding one by the

other, like it is done in mixins [1, 7], is unacceptable, as they both

contain useful and different functionalities. Hence a reasonable

solution would be to put the two products into their own names-

pace. But how to choose the namespace of each product is an open

question. A first possibility is to have the developer explicitly state

what the namespace is. This could be done in the declaration of the

product line itself, as in the following example:

2
In German “Ersatzsignal”.

productline SignalLine exposes Signal;
features Main, Pre;
product MainSignal(Main) with namespace Main;
product PreSignal(Pre) with namespace Pre;

However, such a solution does not solve name clashes that could

occur between variants of different product lines that share the same

namespace. A different solution would be to have the namespace

automatically chosen. How can this be done in a way that ensures

the uniqueness of the namespace and is intuitive for the user?

When multiple variants of one product line are present, they

must cooperate when being composed into a common product of

the outer product line: in Example 2.1 the different station products

require different variants of signals and as usual, when composing

expressions of a program, one has to make sure that no compile

time errors (in particular, typing errors) can occur.

In Example 2.1 both the sig1 and sig2 objects are arguments of

the coveredBy method, so it is necessary that their types are both

compatible with the type of the coveredBymethod’s argument. This

is enforced when they all have the same type, that is global and not

modified in any product, as in the following example:

1 interface Sig { ... };
2 productline SignalLine exposes Signal implements Sig;
3 features Main, Pre;
4 product MainSignal(Main);
5 product PreSignal(Pre);

However, enforcing that types are global and never modified can

be restrictive. In an OO setting, one can view this from the perspec-

tive of subtyping. For example, is it always desirable that different

variants of classes have interface types that are subinterfaces of

each other? Where and how should this be declared?

In some cases it should be possible to automatically derive a

subtyping relation between different variants by analyzing their

code. But without any further restrictions it is easily possible to

introduce diamonds or loops into the resulting type hierarchy.

5 REQUESTED SOLUTION
5.1 Solution Requirements
A solution to the challenge described above should address the

following issues:

(1) Suggest syntactic constructs for referencing multiple vari-

ants of different product lines. This should allow to use mul-

tiple product variants in one single application. In particular,

different product variants from the same product line can

co-exist in one application.

(2) Describe mechanisms that allow multiple variants from the

same product line to interact with each other within one

application.

(3) Describe how your solution relates to existingMulti Software

Product Line approaches (cf. Section 6) and how it handles

the exposure (export) of classes and interfaces.

(4) How can your solution be incorporated into one of the exist-

ing implementation paradigms for Software Product Lines?

Which of them is the most suitable?



SPLC’18, 10–14 September, 2018, Gothenburg, Sweden F. Damiani et al.

5.2 Evaluation Criteria
To evaluate solutions to this challenge, we provide

3
three ABS

models that contain interfaces, classes, and method stubs. This

means that our models are not executable (however, they are com-

pilable with the ABS compiler available from http://abs-models.

org/installation/). Similarly, a solution to the challenge does not

need to be executable: a solution needs only to demonstrate how

co-existence and interoperability are handled.

It is, of course, not required that a solution uses ABS. It should

be straightforward to translate our models to another language.

The first model we provide is for a station with two kinds of

signals, the second for a station with two kinds each for signals

and switches and the last with variability on station and part level.

The models do not contain a product line, but multiple classes for

signals, switches and/or stations.

We expect a solution to our challenge to consist of three parts:

(1) A refactoring of each of the three models into one that uses

product lines to manage variability of signals, switches and

stations, respectively. You can use a product line description

formalism of your choice as long as it serves as input for the

next part:

(2) A systematic, rule-based approach that flattens this refac-

tored model into something similar to the original model

we provided. The solution does not need to be implemented,

but it should be clear how it works in the general case.

(3) A brief textual justification how the transformation defined

in the previous step addresses the issues in Section 5.1.

6 RELATEDWORK
Multi Software Product Lines (MPL) [9, 13, 16] constitute an ap-

proach to structure complex and variable systems into sets of in-

terdependent product lines that can be managed in a decentralized

fashion by multiple teams and stakeholders. For instance, Kästner

et al. [12] proposed a variability-aware module and interface system

where variability is implemented using #ifdef preprocessor direc-

tives and variable linking. The notion of product line composition

the authors propose resolves name clashes by merging elements

with the same name if possible (or else it fails), but they do not

consider the problem of interoperability among variants at the type

level, or the interaction in the same code of two variants of the

same product line.

MPL has also been studied in the context of Delta-Oriented

Programming (DOP) [3] which is how variability in ABS is imple-

mented. The approach in [6] implements the notion of dependencies

between DOP SPL by means of imports. The feature model and the

source code of the importing product line are deeply integrated

with the feature models and the source code of the imported prod-

uct lines, respectively. This extension is very flexible, but it does

not enforce any boundary between different product lines, it does

not discuss the interoperability of the different variants at the type

level, nor does it offer means to manipulate two variants of the

same product line at the same time.

On the other hand, the approach in [4] enforces boundaries be-

tween product lines by using real dependencies instead of imports.

Moreover, this approach discusses the problem of strong coupling

3
http://formbar.raillab.de/en/publications-and-tools/product-lines/

between product lines, which is beyond the scope of the challenge

presented here. (We realize, of course, that coupling is an important

issue that is highly relevant for our use case.) However, that work

only discusses name clashes informally, stating that elements can

be arbitrarily renamed; it does not address the problems of interop-

erability between variants at the type level, nor does it offer means

to manipulate two variants of the same product line at the same

time.

Similarily to [4, 6], Schröter et al. [15] informally discuss the

challenges when designing an MPL, and identify several aspects

that a product line should expose, in addition to its variability, in

order to help product line composition. In particular, they discuss

syntactic interfaces that constitute an API of a product line that can

differ for different products, and behavioral interfaces that describe
the correct usage of this API. The issues raised by our challenge

case can be seen as an extension of the challenges these authors

discussed.

Finally, to the best of our knowledge, the only approach that

manages the code of several variants of the same product line

together at runtime is dynamic product lines [2, 8]. However, such an
approach, as described in [5] for DOP, allows for switching from one

variant to another one at runtime, but does notmodel the interaction

and collaboration between two variants of the same product line at

the same moment of execution. Hence, we consider that dynamic

product lines to be orthogonal to the problem discussed here.

7 CONCLUSION
Our challenge is motivated by the application of software product

lines in an industrial project. It targets the expressive power and

usability of product lines. We see two major advantages that the

requested mechanism for the simultaneous, combined usage of

multiple product variants of one or more product lines can offer:

Modeling systems with variable subcomponents. A mechanism

implementing the described challenge would permit to lift product

line-based design from variable systems to systems with variable
subcomponents. Our challenge case shows that this is not a degen-
erate case of MPL, but an orthogonal approach with permits to

manage multiple products from the same product line.

Variability and Modularity. A mechanism implementing the de-

scribed challenge would offer a perspective on product lines from

the point of view of modularity whose importance is well recog-

nized in programming language design and software architecture.

Ultimately, this can lead to a unification of modularity concepts in

architecture and for dealing with variability.

A solution to our challenge would also constitute a bottom-up

approach to composition of product lines into MPL that emphasizes

the modularity aspect of product lines, not variability management.

We expect that the discussion of possible solutions can lead to the

transfer of ideas between researchers working on modularity and

software variability.

Acknowledgments
This work is supported by: the FormbaR and FormETCS projects,

part of AG Signalling/DB RailLab in the Innovation Alliance of

Deutsche Bahn AG and TU Darmstadt; EU Horizon 2020 project

http://abs-models.org/installation/
http://abs-models.org/installation/
http://formbar.raillab.de/en/publications-and-tools/product-lines/


Interoperability of Software Product Line Variants SPLC’18, 10–14 September, 2018, Gothenburg, Sweden

HyVar (www.hyvar-project.eu), GA No. 644298; and ICT COST

Action IC1402 ARVI (www.cost-arvi.eu).

REFERENCES
[1] Bracha, G., and Cook, W. Mixin-based inheritance. SIGPLAN Not. 25, 10 (Sept.

1990), 303–311.

[2] Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., and Hinchey, M. An

overview of dynamic software product line architectures and techniques: Obser-

vations from research and industry. J. Syst. Softw. 91 (May 2014), 3–23.

[3] Clarke, D., Diakov, N., Hähnle, R., Johnsen, E. B., Schafer, I., Schäfer, J.,

Schlatte, R., and Wong, P. Y. H. Modeling Spatial and Temporal Variability

with the HATS Abstract Behavioral Modeling Language. In Formal Methods for
Eternal Networked Software Systems, M. Bernardo and V. Issarny, Eds., vol. 6659

of LNCS. Springer, 2011, pp. 417–457.
[4] Damiani, F., Lienhardt, M., and Paolini, L. A formal model for multi spls. In

Fundamentals of Software Engineering (2017), M. Dastani and M. Sirjani, Eds.,

vol. 10522 of Lecture Notes in Computer Science, Springer, pp. 67–83.
[5] Damiani, F., Padovani, L., and Schaefer, I. A formal foundation for dynamic

delta-oriented software product lines. In Proceedings of the 11th International
Conference on Generative Programming and Component Engineering (New York,

NY, USA, 2012), GPCE ’12, ACM, pp. 1–10.

[6] Damiani, F., Schaefer, I., and Winkelmann, T. Delta-oriented multi software

product lines. In Proceedings of the 18th International Software Product Line
Conference - Volume 1 (New York, NY, USA, 2014), ACM, pp. 232–236.

[7] Flatt, M., Krishnamurthi, S., and Felleisen, M. Classes and mixins. In Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1998), POPL ’98, ACM, pp. 171–183.

[8] Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K. Dynamic Software
Product Lines. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 253–260.

[9] Holl, G., GrÃijnbacher, P., and Rabiser, R. A systematic review and an expert

survey on capabilities supporting multi product lines. Information and Software
Technology 54, 8 (2012), 828 – 852. Special Issue: Voice of the Editorial Board.

[10] Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., and Steffen, M. ABS: A

core language for abstract behavioral specification. In FMCO’10 (2010), pp. 142–
164.

[11] Kamburjan, E., and Hähnle, R. Uniform modeling of railway operations. In

FTSCS (2016), vol. 694 of Communications in Computer and Information Science,
pp. 55–71.

[12] Kästner, C., Ostermann, K., and Erdweg, S. A variability-aware module

system. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (New York, NY, USA, 2012),

ACM, pp. 773–792.

[13] Krueger, C. W. New methods in software product line development. In Proceed-
ings of the 10th International on Software Product Line Conference (Washington,

DC, USA, 2006), SPLC ’06, IEEE Computer Society, pp. 95–102.

[14] Odersky, M et al. Scala programming language. http://www.scala-lang.org.

[15] Schröter, R., Siegmund, N., and Thüm, T. Towards modular analysis of multi

product lines. In Proceedings of the 17th International Software Product Line
Conference Co-located Workshops (New York, NY, USA, 2013), ACM, pp. 96–99.

[16] Teixeira, L., Borba, P., and Gheyi, R. Safe evolution of product populations

and multi product lines. In Proceedings of the 19th International Conference on
Software Product Line (New York, NY, USA, 2015), SPLC ’15, ACM, pp. 171–175.


	Abstract
	1 Motivation
	2 Referencing Product Variants
	2.1 Product Variant References at Types
	2.2 Product Variant References at Larger Scopes

	3 Exposing Variants
	4 Co-Existence and Interoperability of Product Variants
	5 Requested Solution
	5.1 Solution Requirements
	5.2 Evaluation Criteria

	6 Related Work
	7 Conclusion
	References

